

Enterprise software solutions for mining

Lumada APM – Carbones de Cerrejon

Luis Campusano – Sales Specialist Enterprise Softwares

09/11/2021

© 2021 Hitachi Energy. All rights reserved.

Agenda

- 1. About Hitachi energy
- 2. Carbones del Cerrejón + Hitachi Energy
- 3. Mining challenges
- 4. Lumada Portfolio (APM + FSM)
- 5. Demonstration
- 6. Customer outcomes

Hitachi Business

HITACHI Inspire the Next

нітасні

- Excavator and trucks
- Autonomous Haulage System

- Wencomine FMS
- Ready Line Asset health
- V2X Collision avoidance
- Realtime Fatigue Alert

- Lumada APM
- Ellipse EAM
- Lumana FSM
- Lumada EAM
- Substation automation, protection and control.
- Communication networks
- Transformers

- HITACHI Inspire the Next
- Hitachi Vantara
- IoT Software and solution
- Storage and infrastructure
- Lumada Video Insights
- Infractrusture solution
- Lumada Video Analytics
- Drone

Hitachi Energy

Grid Automation

Grid Integration

Software Solutions

High Voltage products

Transformers

Cerrejon 2022 – Outcome Workshops

HITACHI Inspire the Next

Mining challenges

10 © 2021 Hitachi Energy. All rights reserved.

HITACHI Inspire the Next

Key insights for asset performance in Industry 4.0

IIoT Maturity

OHitachi Energy

HITACHI Inspire the Next

Lumada Platform

13 © 2021 Hitachi Energy. All rights reserved.

01.	Failure mode analysis	Identify and address potential failure modes driving future condition and risk on the asset
02.	Retrospective analysis	Improve future operational decision making through analysis of a re- constructed historical failure event
03.	Prognostic condition forecast	Optimize maintenance activities with early detection of approaching failures and quantitative risk information
04.	Simulation	Extend Remaining Useful Life of critical equipment

HITACHI Inspire the Next

Mantenimiento Centrado en la Confiabilidad

Combinando datos de diferentes fuentes para obtener el máximo valor de sus activos

Lumada APM: Mantenimiento Centrado en la Confiabilidad

Proof Of Concept (Ready Line + APM + Ellipse)

Critical Asset

OHITACHI Energy

HITACHI Inspire the Next

Expert Models

Built based on the foundation of 70 plus years of experience in servicing equipment's

Advanced Physics based Algorithms

Years of domain knowledge gone into building these algorithms

Thousands of Expert Recommendations

Codified servicing expertise to recommendation

Advanced Mathematical Models

Stochastic process model (Markov), Stochastic inference model (Bayes)

Remaining Useful Life curve

For rotating equipment's like turbines, motors, pumps etc.

Critical Assets

Transformers

Circuit Breakers

SAG Mill

Crusher

Cyclone Pump

	77222	0	7
_			
q			
Ч			

Motors

Electrical and Rotating Equipment's (200 plus)

Steam Turbines Capacitor Banks Reactors **Battery Banks**

Cables Motors Pulverizer Draft fan

CCVT Surge Arrestors Proppant mixer Variable speed drive motor Conveyors, feeders Cyclone pump Tertiary crusher

Ball Mill **Diesel engine** Sag Mill

Heat Exchangers Suction rolls Compressors Ventilator

SAG Mill

Crusher

Cyclone Pump Set

Measurements

- Temperature
- Lubricant Speed
- Pressure
- Flow
- Vibration
- Electrical Data

Measurements

- Vibration
- Temperature
- Lubricant
- Speed •

- Drum lining unbalance • Gear defect •
 - · Gearbox bearing defect

Malfunction Modes

Coupling defects

Dirty oil filter

Insufficient oil supply

Malfunction Modes

- Lubricant degradation
- Crusher shaft defect
- Structural looseness

- Lubricant contamination liquids
- Lubricant contamination solids ٠
- Lubricant degradation ٠
- Mechanical looseness
- Motor rotor defect

•

Motor stator defect

- Shaft misalignment
- Trunnion bearing defect
- · Roller bearing defect
- Shaft bending

- Motor stator problem •
- Lubricant contamination liquids •
- Lubricant contamination solids •
- Crusher bearing fault

- Coupling defects
- Motor bearing defect
- Motor rotor defect
- Motor shaft latent defect

- Vibration Temperature

Measurements

- Lubricant
- Flow
- Pressure
- Speed

Malfunction Modes

- Motor bearing defect
- Coupling defects
- Pump bearing fault
- Motor stator problem
- Lubricant contamination
- Lubricant degradation •
- Gear defect •
- · Gearbox bearing defect
- Impeller defect
- Pump casing crack
 - Pump seals defect
 - Drive shaft defect
- Mechanical looseness

Forced draft fan

Measurements

- Electrical
- VibrationLubricant
- Speed

Measurements

- TemperatureLubricant
- Speed
- Vibration

Malfunction Modes

- Motor bearing failure
- Motor rotor/stator defect
 Coupling defects
- Gearbox bearing defect

- **Malfunction Modes**
- Motor windings defect
- Axial bearing defect
- Radial bearing defect

- Gear defect
- Shaft defect
- Structural looseness
- · Plummer block bearing defect
- Plummer block lack of lubrication
- Lubricant contamination solids
- Lubricant contamination liquids
- Lubricant degradation
- Coupling defect
- Fan vane crack
- Oil water contamination
- Oil particle contamination

Compressor

Measurements

- Vibration
- Pressure

Malfunction Modes

- Main pipe leaking
- Air dryer defect
- Pressure dew point false
- Noise and/or vibrations

Control damper defect

Fan rotor cracks

Fan unbalance

•

•

- · Bushings defective
- Loss of oil

- · Oil level too low
- Oil tank overfilled
- Ageing

Lumada APM Prognostics for Haul Trucks – Hydraulic System

@Hitachi Energy

Lumada APM Prognostics for Haul Trucks – Electrical System

© 2021 Hitachi Energy. All rights reserved.

OHitachi Energy

Lumada APM Prognostics for Haul trucks – Diesel engine

HITACHI Inspire the Next

Hitachi Energy

Lumada APM Prognostics for Excavators – Hydraulic System

Hitachi Energy

Lumada APM Prognostics for Excavators – Diesel engine

Hitachi Energy

Benefits of Lumada APM for Mining

One source of IT/OT truth means better decision-making and improved execution

Business is driving the push towards digitalization with the reward of improved operations, lower costs and increased agility. Digitalization will help:

Upgrade from time-based to forecast-based maintenance

Optimize O&M costs

Quickly establish an asset performance management solution that grows with you

HITACHI Inspire the Next

Bengalla Mining Company finds Big Productivity Gains in Incremental Improvements with Lumada

Learn how Bengalla Mines deliver real-time insights to mine technicians to gain control, reduce variance and optimize productivity.

Demonstration

32 © 2021 Hitachi Energy. All rights reserved.

Support for a wide variety of mining assets

Examples: Machinery

Cyclone Pump Sets

SAG Mill & Ball Mill

Main & Pebble Crushers

Conveyors & Feeders

Fleet analysis

Fleet health

Assess fleet health by:

- Region
- Process
- Asset type
- Age

© 2021 Hitachi Energy. All rights reserved. 35

OHitachi Energy

Asset analysis

Asset details and analysis tools

Assess fleet health by:

- Asset health history
- Analyze by sub component
- Issues automatically generated
- Send work requests to EAM
- Data trending and analysis
- Compare to family
- Duval triangles and other industry standard analysis tools

Analyze details, check before you roll

Maintain and replace analysis

Prioritize maintenance and replacement

- Prioritize and track maintenance issues
- Assets are flagged for replacement
- Choose existing replacement algorithm or create your own

Plan for today and the future

Asset	Conditi on	Risk	Issue			Maintenand Priority	e	Status		Actions
CBK.990 - B88790 Valparaiso, Indiana / Circuit Breaker	47.6	•	The Br	eaker failure during a Clo	ose-Open operation	11.9		Monitor		0
CBK.990 - B88790 Valparaiso, Indiana / Circuit Breaker	47.6	•	Make :	sure that the joints tested	d are supposed to be included	11.9		Monitor		0
XFM.23444 - GD778899 Pontiac, Illinois / Transformer	6.0	•	DGA m	niscellaneous issue(s)		4.6		In Progress	s	0
CBK.GLD142825 - GLD142825 Chicago, Illinois / Circuit Breaker	49.6	•	The br	eaker failure during a Clo	ese-Open operation	19.9		New		0
CBK.GLD142825 - GLD142825 Chicago, Illinois / Circuit Breaker	49.6	•	Improp	per close operation		19.9		New		0
CBK.GLD142825 - GLD142825 Chicago, Illinois / Circuit Breaker	49.6	•	Invalid	trip operation		19.9		New		0
CBK.GLD142825 - GLD142825 Chicago, Illinois / Circuit Breaker	49.6	•	Incorre	ect distance from fully clo ABB Ability Ellipse AIP	osed to fully open	19.9		New		0
CBK.GLD142825 - GLD142825 Chicago, Illippis / Circuit Breaker	49.6	•		Selected Projects						
				Project	Option	Utility 🔻	Cost S	Utility / Cost Ratio	Cost Total \$	
				Circuit breaker Capex/Opex 5 Analysis of 5 options	Replace year 1	14	853	0.016	853	~
				Circuit breaker Capex/Opex 5 Analysis of 5 options						

@Hitachi Energy

Proven solution, proven returns

Actual customer savings and operational improvements

\$14.8M reduction in catastrophic events (avoided asset failure)³

\$1.2M reduction in unplanned outages²

\$2.0M reduction in planned outage costs²

 $\stackrel{\$}{\longleftrightarrow}$

Capex & working capital optimization – **\$1.6M**

Recuperated costs equaling almost 2x initial investment¹

15% improvement in asset availability²

20% improvement in labor productivity²

10% reduction in asset running costs²

Enterprise-wide mobile workforce management

Productivity and efficiency gains across the entire organization - field to boardroom

@Hitachi Energy

HITACHI Inspire the Next

SaaS/cloud-based mobile extension to enterprise host systems

- Key component of the Lumada ecosystem
- Strategic part of Hitachi Energy digitalization initiatives
- Cloud-based mobile field service management solution
 - Fully integrated into Microsoft Azure cloud
 - **Today:** Solution designed to solve key operational challenges with assigning/dispatching and executing work
 - Future: Enterprise-wide workforce management. Addition of key modules/applications to support:
 - All work types
 - All technician groups
 - All host systems

	(
\bigcap	
]

SaaS/cloud-based mobile extension to enterprise host systems

OHitachi Energy

OHitachi Energy

Maintenance and inspection in asset-intensive industries

HITACHI Inspire the Next

Simple: Common UX, easy to use

Productive: Work anywhere, on- or offline

Flexible: Laptops, phones or tablets

Wearable device integration: Lumada FSM Hands-Free Inspector

Keep your hands free even in dangerous situations, using only voice navigation and head gestures. Paired with the field tech's mobile device and Lumada FSM application as a "companion"

Improved worker safety

- Keep safety gloves and hardhat on, reducing risk of injury
- Remain fully aware of environment vs. solutions that impair vision

Better productivity

- All required information accessible on headset
- Eliminate time lost referring to paper documents

Easy to use

 Easily pairs with Lumada FSM for inspections and work order information

HITACHI Inspire the Next

Wearable use cases

Remote mentoring/collaboration

View order details

Form completion

C Back	Hest request - SaleDemo001	
Sattlemetal Houses	·	6
A IC TIER Office Insystem	Common	
Hardbag-Ry Hard Toxaase	Asset M	
Notical Cell Station Hold Resp. 451		
WW-Next New Yes Report	Anartid is Required Collecting Date	
WW- DOD Dismarps Plan Inspectio .		
www-Operational Equipment Impage	Catestry Date is Received Installation Date	
	OII Preservation Type	

View schematics

Chatbot order creation

@Hitachi Energy

Assignment, dispatch and monitoring

OHitachi Energy

OHITACHI Energy

Customer outcomes

50 © 2021 Hitachi Energy. All rights reserved.

APM deployments and projects

Asset Performance Management – Business Outcomes & ROI

Quantified business outcomes

- At least 5 Outotec SAG mill and Ball mill failures were prevented resulting in savings of over USD100K each with at least 70% likelihood of failure
- Reduction of annual costs of USD1M per asset at a mining facility
- With accurate forecast of several days, downtime costs for each motor or gear box failure event is reduced

ROI Calculation

- \$1.2M reduction in unplanned outages²
- \$2.0M reduction in planned outage costs²
- 20% improvement in labor productivity²
- 15% improvement in asset availability²
- 10% reduction in asset running costs²
- \$14.8M reduction in catastrophic events (avoided asset failure)³
- Recuperated costs equaling almost 2x initial investment¹
- Capex & working capital optimization \$1.6M

Customer example: condition-based malfunction forecasts for mining operations

Asset scope

- Phase I: main crusher, two cyclone pumps and semi-autogenous grinding (SAG) mill
- Phase 2: ball mill, pebble crushers, feeders and conveyors

Business drivers

- Facing increased cost pressure
- Minimize maintenance costs and effort
- Ensure equipment reliability and availability
- Need actionable insights for operational decision making

Why APM?

- Forecast equipment condition, malfunction risks and maintenance needs
- Prognostic dashboard provides visual summary for quick decision making
- Easily integrate prognostics reports with EAM or FSM solutions

Value realized

- Successfully avoided a critical equipment malfunction with an estimated cost of US\$220,000 and 12 hours of downtime
- Significantly reduced downtime costs by avoiding lost production from unscheduled delays
- Significantly reduced maintenance costs by better preparing for maintenance and replacement tasks
- · Established a more robust and transparent decision process by effectively leveraging asset data collected

HITACHI Inspire the Next